

E-MRS 2016 Spring Meeting

Selective growth of ZnO nanosheets and their application in piezoelectric and triboelectric energy harvesting devices

Symposium W Lille, May 5, 2016 Gonzalo Murillo, PhD CNM (CSIC) Barcelona, Spain gonzalo.murillo@csic.es

sinergy-project.eu

Silicon Friendly Materials and Device Solutions for Microenergy Applications

Introduction

Piezoelectric Energy Harvesting: nano & micro

- Piezoelectric Energy Harvesters: our final target
 - Silicon mass and cantilever beam based on DRIE of an SOI wafer
 - ZnO nanostructures (nanowire and nanosheet) as piezoelectric material
 - Polymer encapsulation of NW/NS network
 - Monolithically integrated Schottky diode and capacitor

Piezoelectric Energy Harvesting

- Why ZnO nanostructures?
- ZnO is a semiconductor that presents a piezoelectric behavior and direct band-gap
- ZnO nanostructures are easy to grow and integrate with silicon
- More flexible and robust than thin-films
- Compatible with VLS silicon technologies
- ZnO is also a hot-topic and low-cost solution to grow

Silicon Friendly Materials and Device Solutions for Microenergy Applications

Growth of ZnO nanosheets (NSs) and nanowires (NWs)

Interview Service Ser

Hydrothermal process (cheap, low T, wafer level and selective)

NMP3-SL-2013-604169

ZnO NW synthesis: activation method

Growth Characterization of NW over gold

seed layer Density = 124 NW/100µm²

- Activation process developed with H₂O₂:KOH (1:3 and 1:2), H₂O₂:NaOH (1:3 and 1:2) or HNO₃.
- Relationship between cyclic voltammetry and surface cleanness and quality

Selective area ZnO NS synthesis at wafer level

Selective area growth on silicon wafers

• Micrometric features can be obtained with high selectivity at wafer level.

ZnO NS synthesis on other substrates

- Performed in flexible substrates such as polyimide
- It can be grown on top of glass (transparent device)
- Wafer-level synthesis

NMP3-SL-2013-604169

11

Silicon Friendly Materials and Device Solutions for Microenergy Applications

Material characterization

ZnO NS vs. NW

Characterization by HRTEM, SEM and XRD:

- ZnO NWs & NWs show a **good crystalline** structure.
- NS: Thickness < 20 nm, several μm long; high aspect ratio
- NS: Extremely high-density, reproducible and fast
- Growth along (0001) face is inhibited by the local pH gradient around seed layer
- Seed layer is an insulator which avoid screening effect of external carriers going into the ZnO

In-situ picoindentation

- ZnO nanostructures allow higher compression without fracture.
- It has been demonstrated that a single ZnO NW can stand for a compressing force of more than 1mN!

Piezoresponse measurement (PFM)

Piezoresponse Force Microscopy (PFM):

- AFM technique based on the converse piezoelectric effect
- Conductive tip used to measure the mechanical response when an electrical voltage (usually ac-voltage) is applied to the surface

Piezoresponse measurement (PFM)

ZnO nanowire: d33 ≈ 8.6 pm/V

1.6 µm

• I-V and piezoresponse characterization

Piezoresponse AFM (PFM) measurement of ZnO nanowires and nanosheets at 37kHz.

2 non-linear I-V curve 50 1.5 0.0 1 40 Deflection (nm) 00 00 00 0.5 Current (pA) 0 -1,3 µm -0.5 -1 Trace 10 -2.6 um Retrace -1.5 -2 **3** 13-60416**①** 2 6 -3 2 -2 -1 1 0 15 Applied Voltage (V) Bias Voltage (V)

PFM characterization

- Piezoresponse of ZnO nanowires and nanosheets at 37kHz.

Silicon Friendly Materials and Device Solutions for Microenergy Applications

Piezoelectric and triboelectric applications: preliminary results

FEM simulations of embedded ZnO nanostructures

- ZnO nanowires
 - Study of more suitable polymer to encapsulate ZnO NWs in terms of open circuit voltage:

FEM simulations of embedded ZnO nanostructures

- ZnO nanosheets:
 - Study of more suitable polymer to encapsulate ZnO NSs in terms of open circuit voltage: Electric potential (V)

×10⁻⁷

-0.06

Flexible ZnO NS EH

PFM of Flexible generator based on ZnO NS + PDMS

NMP3-SL-2013-604169

Flexible ZnO NS EH

PFM of Flexible generator based on ZnO NS + PDMS

NMP3-SL-2013-604169

Flexible NS-based prototype

- Flexible energy harvester
 - Vibrational device characterisation
 - Tip mass made with two magnets

Flexible NS-based prototype

gold electrode

ZnO nanosheets embedded in PDMS

Seed layer

• Piezoelectric effect

Flexible device mounted on top of an electromagnetical shaker to be tested at a controlled vibration at a certain frequency and acceleration

Silicon Friendly Materials and Device Solutions for Microenergy Applications

Conclusions

Conclusions

- Our novel seed layer allows selective area growth of ZnO NSs
- This growth is inexpensive, fast, reproducible, at wafer
 level and over transparent, flexible and silicon
 substrates
- Piezoelectric coefficients of ZnO NWs and NSs have been measured
- A flexible NS-based prototype has been fabricated and electrically characterized
- Some preliminary results show a promising application of ZnO NSs in triboelectric and piezoelectric devices

Acknowlegments:

Minbaek Lee (b), Helena Lozano (a), Isaac Rodríguez-Ruiz (c) and Jaume Esteve (a)
(a) Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra 08193, Spain;
(b) Department of Physics, Inha University, Incheon 22212, South Korea;
(c) CEA/DEN/DTEC/SGCS, F-30207 Bagnols-sur-Cèze, France

Thank you! Any question?

This work was supported by FP7-NMP-2013-SMALL-7, SiNERGY (Silicon Friendly Materials and Device Solutions for Microenergy Applications), Contract n. 604169

sinergy-project.eu Contact: luis.fonseca@imb-cnm.csic.es

Gonzalo Murillo – IMB-CNM gonzalo.murillo@csic.es