

Leibniz Institute for Solid State and Materials Research Dresden

Nanocrystalline silicon with tungsten silicide inclusion phases: Morphology and thermoelectric properties

> Gabi Schierning Institute for Metallic Materials (IMW), IFW Dresden

Content

- I. Introduction
- **II.** Synthesis and fabrication
 - a) Silicon heterocomposites from the gas phase
 - b) Spark plasma sintering
 - c) Effects of the electric current during SPS
- **III.** Thermoelectric generators
 - a) Thermoelectric generator from nanocrystalline Si + WSi₂
 - b) pn junction thermoelectric generators
- **IV.** Conclusion

Thermoelectric generator

Best possible efficiency:

$$\eta_{\max} = \eta_{Carnot} \cdot \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + \frac{T_2}{T_1}}$$

Thermoelectric figure of merit: ZT

Material's figure of merit zT and nanotechnology

 α : Seebeck coefficient

- σ : electrical conductivity
- к: thermal conductivity

Content

- I. Introduction
- **II.** Synthesis and fabrication
 - a) Silicon heterocomposites from the gas phase
 - b) Spark plasma sintering
 - c) Effects of the electric current during SPS
- **III.** Thermoelectric generators
 - a) Thermoelectric generator from nanocrystalline Si + WSi₂
 - b) pn junction thermoelectric generators
- **IV.** Conclusion

Nanopowder synthesis from the gas phase

Nanopowder Synthesis: H. Wiggers, IVG, Univ. of Duisburg-Essen;

N. Petermann et al., J. Phys. D: Appl. Phys. 48, 314010 (2015).

N. Petermann et al., J. Phys. D: Appl. Phys. 44, 174034 (2011).

Perfectly intermixed two-component nanopowder: Si + WSi₂

N. Petermann et al., J. Phys. D: Appl. Phys. 48, 314010 (2015).

TEM of Si+WSi₂ samples with different W-content

1 at.% W

1 at.% W

Samples and TEM by Tom Schneider and Hartmut Wiggers, Univ. Duisburg-Essen

Spark plasma sintering of thermoelectric powder

Influence of electric current on developing microstructure

- Formation of percolation network
- Redistribution of heat due to Peltier effect

Review: O. Guillon et al., Adv. Eng. Mater. 16(7), 830-849 (2014).

A. Becker et al., Appl. Phys. Lett. 101, 013113 (2012).

D. Schwesig et al., Nanotechnology 22, 135601 (2011).

Microstructure of nanocrystalline Si + WSi₂ composite

Thermoelectric performance of nano Si, SiGe, SI+WSi₂

O IFW

Devices: sustainable material and fully scalable processes

V. Kessler et al., J. Electr. Mater. 43 (5), 1389 (2014). V. Kessler et al., Adv. Eng. Mater. 15 (5), 379 (2013).

Novel device concept

G. Span, M. Wagner, S. Holzer, T. Grasser, Thermoelectric power conversion using generation of electron-hole pairs in large area p-n junction, ICT 2006

Conclusion

- Nanostructured bulk Si, SiGe and Si composites:
 - Tailoring the phonon mean free path
 - Improvement of figure of merit
- Thermoelectric performance:
 - Reasonable *zT* = 0.63 @ 950 °C (n-type, with WSi₂)
 - Harsh conditions possible by the implementation of novel device concepts

Thank you for your attention!

Univ. Duisburg-Essen

Nanostrukturtechnik (NST) Julia Stötzel Franziska Maculewicz Martin Dehnen Roland Schmechel Nanoparticle Synthesis Nils Petermann Tom Schneider Hartmut Wiggers

Theory Sebastian Angst Dietrich Wolf **IFW Dresden**

Heiko Reith Nicolas Perez Javier Garcia Melanie Mohn Jae-Ki Lee Felix Thiel **Kornelius Nielsch**

Alumni: Niklas Stein, André Becker, Victor Kessler, Markus Engenhorst, Ruben Chavez, Martin Fendrich, Ralf Theissmann

