

Ola Nilsen

Atomic layer deposition for microbatteries

University of Oslo

The abstract...

All **solid state microbatteries** can only be realised using pinhole free films, particularly for the electrolytes, where also thinner is better in terms of ionic conductivity. The atomic layer deposition (ALD) technique is identified as perhaps the enabling technology for realisation of such structures, also on 3D structures.

The current contribution will give an **overview of the present status** in deposition of materials for microbatteries by ALD, with highlights from both the anodes, electrolytes and cathodes, where **recent findings in pseudocapacitive behaviour of LiFePO**₄ will be given. The ALD technique has traditionally been used for deposition of dielectric materials, also when it comes to ionic conductivities, while battery materials are ideally highly conducting with respect to Li-ions. This has led to **challenges in deposition processes containing lithium** where the growth perhaps no longer is strictly terminated by the surface reactions. What implications does this have on the ALD-growth?

University of Oslo

T. Aaltonen, ..., H. Fjellvåg, ECS Transactions 41 (2011) 331. X. Meng, ..., X. Sun, A

X. Meng, ..., X. Sun, Advanced Materials, **24** (2012) 3589.

University of Oslo

Li-battery

University of Oslo

Li-film battery

University of Oslo

Li-film battery

University of Oslo

Li-film battery

 $\begin{array}{l} \text{LiMn}_2\text{O}_4\\ \text{LiCoO}_2\\ (\text{Li})\text{FePO}_4\\ (\text{Li})\text{V}_2\text{O}_5 \end{array}$

 Li_2CO_3 Li(OH) Li-La-O Li_{0.32}La_{0.30}TiO_z LiAIO₂ Li_xSiO_v Li_xAl_zSiO_y LiNbO₃ LiTaO₃ Li₃PO₄ **LiPON** LiF Li₃N

Li_xTiO_y TiO₂

University of Oslo

Li-film battery

 $LiMn_2O_4$ LiCoO_2 (Li)FePO_4 (Li)V_2O_5 Li_2CO_3 Li(OH) Li-La-O $Li_{0.32}La_{0.30}TiO_z$ LiAIO₂ Li_xSiO_v Li_xAl_zSiO_v LiNbO₃ LiTaO₃ Li₃PO₄ **Lipon** LiF Li₃N

Li_xTiO_y TiO₂

University of Oslo

Lithium Di-tert-butylcyclopentadiene

t-Bu

Journal of Materials Chemistry RSCPublishing

M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsen, and H. Fjellvåg, J. Mater. Chem. 19, 8767 (2009).

Li(^tBu2Cp) Lithium Di-tert-butylcyclopentadiene

M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsen, and H. Fjellvåg, *J. Mater. Chem.* **19**, 8767 (2009).

t-Bu

Amund Ruud, Ville Miikkulainen, Kenichiro Mizohata, Helmer Fjellvåg, Ola Nilsen, submitted.

University of Oslo

Monovalent, ...so are Cu(I)Cl, Ag⁺, In(I)Cl... \Rightarrow As monomer, what terminates the surface?

Sublimes as trimer

Monomer and dimer in solvated form

Monovalent, ...so are Cu(I)Cl, Ag⁺, In(I)Cl... \Rightarrow As monomer, what terminates the surface?

Basic oxide?

 \Rightarrow Basic oxides tend to absorb water and CO₂...

Ref. to growth of Li_2CO_3 later...

Same for growth of Na and K compounds? Yes...

Monovalent, ...so are Cu(I)Cl, Ag⁺, In(I)Cl... \Rightarrow As monomer, what terminates the surface?

Basic oxide?

 \Rightarrow Basic oxides tend to absorb water and CO₂...

Mobile ions?

 \Rightarrow The aim is Li-ion conducting materials..., after all...

Ref. to growth of $LiAIO_2$ later... \Rightarrow Reservoir growth

Ref. to lithiation of MnO_2 and V_2O_5

Monovalent, ...so are Cu(I)Cl, Ag⁺, In(I)Cl... \Rightarrow As monomer, what terminates the surface?

Basic oxide?

 \Rightarrow Basic oxides tend to absorb water and CO₂...

Mobile ions?

 \Rightarrow The aim is Li-ion conducting materials..., after all...

Control composition?

 \Rightarrow A sum of the above...

Need a good selection of precursor chemistries

Monovalent, ...so are Cu(I)Cl, Ag⁺, In(I)Cl... \Rightarrow As monomer, what terminates the surface?

Basic oxide?

 \Rightarrow Basic oxides tend to absorb water and CO₂...

Mobile ions?

 \Rightarrow The aim is Li-ion conducting materials..., after all...

Control composition? \Rightarrow A sum of the above...

Freshness of precursor? \Rightarrow Batch differences...

LiMn₂O₄ using [LiOtBu + H₂O] + [Mn(EtCp)₂ + H₂O]

The same result with $[Li(thd) + O_3] + [Mn(thd)_3 + O_3]...$

Almost no Li or Na incorporated into the film during growth

Figure 1. Film growth per cycle vs pulsing ratio (proportion of alkalimetal subcycles in a supercycle) using $Mn(EtCp)_2$ as the Mn precursor. The line represents the theoretical growth per cycle with no contribution from alkali-metal subcycles to the film growth.

UiO Centre for Materials Science and Nanotechnology

University of Oslo

LiMn₂O₄

The same result with $[Li(thd) + O_3] + [Mn(thd)_3 + O_3]...$

Figure 2. Growth per cycle and relative lithium composition for $\text{Li}_x \text{Mn}_y \text{O}_z$ films deposited with Li(thd) as the lithium precursor for films with (a) 4000 and (b) 1000 deposition cycles.

Figure 4. Film growth per cycle and relative lithium composition for $\text{Li}_x \text{Mn}_2\text{O}_4$ films deposited with a pulsing sequence of $100 \times \{19 \times [\text{Mn}(\text{thd})_3 (1.5/1) + \text{O}_3 (5/5)] + [\text{Li}(\text{thd}) (X/10) + \text{O}_3 (5/5)]\}.$

Saturation of Li content for ca. 55%

University of Oslo

LiMn₂O₄

The same result with $[Li(thd) + O_3] + [Mn(thd)_3 + O_3]...$

XRD for 4000-cycle films on Si(100):

- Spinel Li_xMn₂O₄ | visible throughout the series
- MnO₂ impurity with
 1.0% pulsed Li
- Film with 5.0% pulsed Li [111] oriented

Gas phase lithiation

. . .

 $[Li(thd) + O_3] = fixed composition$ $[LiO^tBu + H_2O] = fixed composition$

Grew films of: V_2O_5 , MnO_2 , TiO_2 , Al_2O_3 , ZnO, Co_3O_4 , Fe_2O_3 , NiO

Tried lithiation using $[Li(thd) + O_3]$ or $[LiO^tBu + H_2O]$

Got: unaltered films for TiO₂, Al₂O₃, ZnO, Co₃O₄, Fe₂O₃, NiO

-> V₂O₅, MnO₂ ?

Gas phase lithiation: MnO₂

 $[Li(thd) + O_3] = fixed composition$ $[LiO^tBu + H_2O] = fixed composition$

As lithiated and annealed: LiMn₂O₄

As lithiated: LiMn₂O₄

Started with: MnO₂

Figure 6. XRD diffractograms of (a) Li(thd)–O₃-treated (100 ALD cycles) and annealed MnO₂, (b) Li(thd)–O₃-treated MnO₂, and (c) as-deposited MnO₂ (110 nm). Films were deposited on Si(100). Black and red tick marks below the graphs refer to LiMn₂O₄ spinel (35-0782) and pyrolusite β -MnO₂ (24-0735), respectively.

Gas phase lithiation: MnO₂

Figure 11. Discharge capacities and first-cycle potentiograms (insets) of an 86-nm MnO_2 film treated with 200 cycles of LiO^tBu + H₂O: (a) 10 charge-discharge cycles with 50 μ A, (b) 1000 charge-discharge cycles with 200 μ A.

 $[Li(thd) + O_3] = fixed composition$ $[LiO^tBu + H_2O] = fixed composition$

Figure 8. XRD diffractograms of (a) $\text{Li}_x \text{V}_2\text{O}_5$ films made with $\text{LiO}^4\text{Bu}-\text{H}_2\text{O}$ treatment, (b) $\text{Li}_x \text{V}_2\text{O}_5$ films made with $\text{Li}(\text{thd})\text{-O}_3$ treatment, and (c) parent V_2O_5 film on Si(111). Indexing refers to the *Pmmn* space group for V_2O_5 and $\varepsilon\text{-Li}_x \text{V}_2\text{O}_5$, ³⁵ with unit cell dimensions of a = 3.57 Å, b = 11.54 Å, c = 4.38 Å and a = 3.57 Å, b = 11.36 Å, c = 4.65 Å, respectively. Dashed black lines and red lines refer to $\alpha\text{-V}_2\text{O}_5$ and $\varepsilon\text{-Li}_x \text{V}_2\text{O}_5$, respectively.

Figure 9. AFM images of (a) V_2O_5 film and (b) V_2O_5 film treated with 100 cycles of LiO³Bu + H₂O.

As LiO^tBu lithiated: ε -Li_xV₂O₅ As Li(thd) lithiated: ε -Li_xV₂O₅

Started with: α -V₂O₅

University of Oslo

 V_2O_5

 V_2O_5 VO(OC₃H₇)₃ + H₂O J.C. Badot, ..., D. Lincotb, *Electrochem. Solid-State Lett.* **3** (2000) 485. V₂O₅ VO(OC₃H₇)₃ + O₃

X. Chen, ..., G. Rubloff, *Chem.Mater.* **24** (2012) 1255.

O₃-based ALD of crystalline V₂O₅ cathodes

Figure 4. SEM of the AAO template (a) before and (b) after 1000 cycle ozone-based ALD V_2O_5 film deposition; (c) EDX line scan of V signa through the cross-section of V_2O_5 coated AAO template; (d) SEM image of V_2O_5 nanotubes inside AAO pores.

UiO Centre for Materials Science and Nanotechnology

University of Oslo

75

50

25

0

Spesific capacity (mAh/g)

 V_2O_5

$$V_2O_5$$
 VO(thd)₃ + O₃

E. Østreng, ..., H. Fjellvåg, J. Mater. Chem. A, 2 (2014) 15044

a)

Ô

00000

1C

30

1C

960C

60

Charge/discharge cycle number

FePO₄

FePO₄

FePO₄

 $Fe(thd)_{3}/O_{3} + Me_{3}PO_{4}/(H_{2}O + O_{3})$

FePO₄

FePO₄

FePO₄

2θ (°)

UiO Centre for Materials Science and Nanotechnology

University of Oslo

Amund Ruud, Ville Miikkulainen, Kenichiro Mizohata, Helmer Fjellvåg, Ola Nilsen, submitted.

UiO Centre for Materials Science and Nanotechnology University of Oslo

[LiHMDS + H_2O] = reacts fast with air

[LiHMDS + NH₃] = reacts faster with air - capped with MoN_x

 $[LiHMDS + H_2O + CO_2] = Li_2CO_3$

E. Østreng, P. Vajeeston, O. Nilsen, and H. Fjellvag, RSC advances, 2, 6315 (2012).

UiO Centre for Materials Science and Nanotechnology University of Oslo

[LiHMDS + H_2O] = reacts fast with air

[LiHMDS + NH_3] = reacts faster with air - capped with MoN_x

 $[LiHMDS + H_2O + CO_2] = Li_2CO_3$

E. Østreng, P. Vajeeston, O. Nilsen, and H. Fjellvag, RSC advances, 2, 6315 (2012).

UiO Centre for Materials Science and Nanotechnology

University of Oslo

LIHMDS (LI(OH), LI₂CO₃, LI₃N)

Ν

О

GPC (Li₃N) = 1.1 Å/cycle GPC@167 °C = 1.1 Å/cycle

GPC (Li_2CO_3) = 0.23 Å/cycle GPC@331 °C = 0.23 Å/cycle

E. Østreng, P. Vajeeston, O. Nilsen, and H. Fjellvag, RSC advances, 2, 6315 (2012).

University of Oslo

LIHMDS (LI-SI-O by [LIHMDS + O_3])

$$\begin{array}{ccc} \mathsf{CH}_3 & \mathsf{CH}_3 \\ \mathsf{H}_3\mathsf{C}-\overset{\mathsf{}}{\mathsf{Si}}\overset{\mathsf{}}{-}\mathsf{N}-\overset{\mathsf{}}{\mathsf{Si}}\overset{\mathsf{}}{-}\mathsf{CH}_3 \\ \mathsf{H}_3\overset{\mathsf{}}{\mathsf{C}} & \overset{\mathsf{}}{\mathsf{Li}} & \overset{\mathsf{}}{\mathsf{CH}}_3 \end{array}$$

FIG. 7. (Color online) Photographs of the soda lime glass substrate after ALD lithium silicate film deposition at 300 °C.

TABLE I. Elemental compositions of the lithium silicate thin films as measured with ERDA.

	Deposition temperature						
	150 °C	200 °C	250 °C	300 °C	350 °C	400 °C	
Li (at. %)	31.8	29.8	32.5	30.8	30.0	37.5	
Si (at. %)	11.2	13.9	16.1	17.7	18.5	15.1	
O (at. %)	44.2	48.7	46.3	48.6	49.6	45.9	
C (at. %)	3.94	0.96	0.65	0.32	0.14	0.15	
H (at. %)	8.78	6.63	4.60	2.70	1.71	1.29	
Thickness (nm)	62	62	86	120	140	172	
Density (g/cm ³)	2.48	2.26	2.32	2.36	2.39	2.5	
Li:Si:O ratio	2.8:1:4.0	2.1:1:3.5	2.0:1:2.9	1.7:1:2.8	1.6:1:2.7	2.5:1:3.	

Li-content decreased with increasing temperature

UiO Centre for Materials Science and Nanotechnology University of Oslo

Li₃PO₄

J. Hämäläinen, ... M. Leskelä, *J. Electrochem. Soc.* **159** (2012) A259.

Figure 2. Growth rates and refractive indexes of lithium phosphate films as a function of deposition temperature. The precursor pulses and purges were either 2 s (open symbol) or 4 s (solid) each. A total of 1000 cycles were applied for each deposition.

UiO Centre for Materials Science and Nanotechnology University of Oslo

LiPON

[LiO^tBu + H₂O + TMP + ^PN₂] LiPON (250 °C), 1.05 Å/s, N content controlled by ^PN₂ pulse length.

A. C. Kozen, A. J. Pearse, C.-F. Lin, M. Noked G. W. Rubloff, *Chemistry of Materials*, **2015**, *27*, 5324-5331.

 $[(H_2NP(O)(OC_2H_5)_2) + LiHMDS]$ LiPON (250 – 330 °C), 0.7 – 1.0 Å/s. Ionic conductivity of 6.6 x 10⁻⁷ Scm⁻¹ @RT.

M. Nisula, Y. Shindo, H. Koga M. Karppinen, *Chemistry of Materials*, **2015**, *27*, 6987-6993.

LiAIO₂

[LiO^tBu + H₂O] + [TMA + H₂O] @ 225 °C

Figure 7. LiAlOx growth rate measured by ellipsometry as a function of % LiOH ALD cycles. Gray shaded area designates the region of stable growth with constant, linear growth as a function of ALD cycles.

Figure 4. QCM mass gain profiles acquired over 100 cycles of LiAlOx ALD using 0%, 20%, 33%, 50%, 67%, and 80% LiOH cycles.

D.J. Comstock, and J. W. Elam, J. Phys. Chem. C. 117 (2013) 1677.

University of Oslo

LiAlO₂ [LiO^tBu + H₂O] + [TMA + H₂O] @ 225 °C

D.J. Comstock, and J. W. Elam, J. Phys. Chem. C. 117 (2013) 1677.

UiO **Centre for Materials Science and Nanotechnology** University of Oslo

LiAIO₂

$[LiO^{t}Bu + H_{2}O] + [TMA + O_{3}]$

 $[LiO^tBu + H_2O] + [TMA + H_2O]$

Figure 8. Li cation percentage in LiAlOx films measured by ICP-MS and QCM as a function of % LiOH ALD cycles.

D.J. Comstock, and J. W. Elam, *J. Phys. Chem. C.* **117** (2013) 1677.

V. Miikkulainen,... H. Fjellvåg, *J. Vac. Sci. Technol. A* **33** (2015) 01A101

UiO Centre for Materials Science and Nanotechnology

University of Oslo

University of Oslo

UiO **Centre for Materials Science and Nanotechnology**

University of Oslo

Conductivity of LiAIO₂ films

► Thermally activated ionic characteristics → Arrhenius relation: $\sigma = \frac{\sigma_0}{T} \exp(-\frac{E_a}{kT})$

Larger thickness-dependence for in-plane method: surface, interface

> σ @ room temperature: $10^{-10} \sim 10^{-9}$ Scm⁻¹

University of Oslo

Conductivity of LiAlO₂ films

Materials	σ _{RT} (S cm ⁻¹)	E _a (eV)	Ref.
Single-crystalline γ-LiAlO2	~1×10 ⁻¹⁷ *	1.14(1)	1
Polycrystalline γ -LiAlO ₂	2×10 ⁻¹⁴ *	0.81 (extrinsic) 1.3 (intrinsic)	2
ALD LiAIO ₂ film on quartz substrate	5.6×10 ⁻⁸ *	0.56	3
Quenched glass $0.6Li_2O-0.4Al_2O_3$ $0.7Li_2O-0.3Al_2O_3$	3×10 ⁻¹¹ * 5×10 ⁻⁸ *	0.88 0.57	4
ALD LiAIO ₂ films, sapphire and Ti substrates	1~5 ×10 ⁻¹⁰	0.7~0.8	This work

- Room temperature conductivity was rarely reported
- Disordered amorphous/glassy $Li_xAIO_y \rightarrow higher$ conductivity
- Improved conductivity can be expected with increasing Li content

1. The Journal of Physical Chemistry C 2012, 116, 142432. J. Am. Ceram. Soc. 1984, 67, 418-413. J. Chem. Mater. 2014, 26, 3128-3134.4. J. Appl. Phys. 1980, 51, 3756-3761.

University of Oslo

Acknowledgements

Helmer Fjellvåg

Mari Alnes Matti Putkonen Titta Aaltonen Ville Miikkulainen

Knut B Gandrud Erik Østreng Anders Pettersen Amund Ruud Øystein S. Fjellvåg Kenichiro Mizohata Annina Moser Yang Hu Martin Sunding Anna Magraso Alexander Azarov Timo Sajavaara Leila Costelle

