### Zinc oxide nanorod p-n junction piezoelectric energy harvesters: mechanism, developments and applications

### Joe Briscoe

Materials Research Institute School of Engineering and Materials Science Queen Mary University of London, UK.

j.briscoe@qmul.ac.uk



# Outline



- Background principles
- Synthesis Method
- ZnO nanorod morphology
- Screening, p-n junctions and passivation
- Proper characterisation
- Wireless sensor nodes
- Recent developments



# Piezoelectric effect



# Piezoelectric energy harvesting

- Basic design developed from piezoelectric sensors: cantilever vibrates and alternating charge harvested in external circuit
- Lead zirconate titanate (PZT) most common material used for energy harvestors



Queen Mary

University of London

Anton and Sodano Smart Materials and Structures **16**, R1–R21 (2007).

Cook-Chennault, Thambi, and Sastry Smart Materials and Structures **17**, 43001 (2008).

Beeby, Tudor, and White *Measurement Science and Technology* **17**, R175 (2006).

# Piezoelectric energy harvesting

- Power microdevices or charge batteries
- On clothing, in remote locations, etc.
- Potential for self-powered systems



Lee et al. Adv. Mater. 24, 1759-1764 (2012)



Hu et al. Nano Lett. 11, 2572-2577 (2011)





# Why ZnO nanorods?

- Lower d<sub>33</sub> than many other piezoelectrics ZnO: 5-12 pC/N,<sup>1</sup> PZT: 100-400 pC/N.<sup>2</sup>
- Easily produced nanostructures – solution synthesis
- Can coat almost any surface
- <sup>1</sup> Tokarev et al. Sov. Phys. Solid State **17** 629 (1975).
- <sup>2</sup> Ledermann et al. Sens. Act. A **105**, 162 (2003).





# ZnO nanorod synthesis

- Conductive substrates: polyethylene terephthalate (PET) coated with indium-tin oxide (ITO)
- Sputtered ZnO seed layer



 ZnO nanorods grown in aqueous chemical bath at 90 °C using zinc nitrate and hexamethylenetetramine (HMT)





# ZnO nanorods





# ZnO nanorods



# ZnO nanorods: energy harvestors



30° tilt



- Average diameter 75 nm
- Average length 2 µm
- Aspect ratio ~25:1

**Cross-section** 





# Device fabrication

 P-type layer added → diode
PEDOT:PSS spray-coated from aqueous suspension



 Electrodes added → flexible energy harvesting device





# Device fabrication

### • PEDOT:PSS spin-coated $\rightarrow$ p-n junction





### Device structure





# PEDOT: PSS and screening

- Screening reduces measured potential difference
- Metal contacts and internal carriers screen rapidly
- Built-in bias at p-n junction reduces screening rate
- Slower screening from p-type  $\rightarrow$  voltage measured



- $E_{dep}$  depolarisation field
- $E_{scr}$  screening field
- $V_{out} \propto E_{dep}$   $E_{scr}$

Briscoe et al., *Adv. Energy Mater.* **2**, 1261–1268. (2012). doi: 10.1002/aenm.201200205



# PEDOT: PSS and screening

- Screening reduces measured potential difference
- Metal contacts and internal carriers screen rapidly
- Built-in bias at p-n junction reduces screening rate
- Slower screening from p-type  $\rightarrow$  voltage measured



- $E_{dep}$  depolarisation field
- $E_{scr}$  screening field
- $V_{out} \propto E_{dep}$   $E_{scr}$

Briscoe et al., *Adv. Energy Mater.* **2**, 1261–1268. (2012). doi: 10.1002/aenm.201200205



# Device comparison





# Current-voltage

- ZnO/PMMA
- High resistance with almost symmetrical breakdown

- PEDOT:PSS
- Diode characteristics with high leakage





# Controlled bending



- Cam used to produce controllable deflection of flexible substrate
- Voltage or current peak measured as substrate drops from cam
- Avoids resonance effects of substrate



**PEDOT: PSS** 

# Controlled bending

PMMA



Peak open-circuit voltage highest for PMMA device

J. Briscoe et al. (2013) Energy Environ. Sci. 6: 3035–3045. doi: 10.1039/C3EE41889H

# Controlled bending - Load matching







Power from  $V_{oc} \ge J_{sc}$  overestimates by 4x •

# Controlled bending - Rate dependence



Queen Mary

University of London

 Peak open-circuit voltage increases with bending rate (1 Hz leads to measured peak velocity of 0.8 m/s)

# Controlled bending - Rate dependence



Queen Mary

University of London

|                                            | ZnO/PMMA | ZnO/PEDOT:PSS |
|--------------------------------------------|----------|---------------|
| V <sub>oc</sub> (mV)                       | 252      | 90            |
| Load R (kΩ)                                | 286      | 1.68          |
| Area power density (µWcm <sup>-2</sup> )   | 0.165    | 36            |
| Volume power density (mWcm <sup>-3</sup> ) | 0.30     | 144           |
| Energy output (nJcm <sup>-2</sup> /cycle)  | 0.17     | 38.6          |



# Device output

- Device output is still quite low
- Peak voltage is too low to be useful
- Need other ways to improve devices
- Is screening still an issue?
- What about the ZnO surface?







# Surface passivation

#### **CuSCN** spray deposition



- 0.15 M CuSCN solution in propyl sulphide spray-coated onto nanorods at ~80 °C
- 10 or 20 layers coated (5 or 10 ml)

Hatch, S., et al. (2013). *Thin Solid Films* 531: 404-407 DOI: 10.1016/j.tsf.2012.12.114

### Layer-by-layer polyelectrolytes

- Dipped into 10 wt%, aqueous solution of PDADMAC and rinsed with DI water
- Dipped into 10 wt% aqueous solution of PSS  $\rightarrow$  1 bilayer
- Repeated to form 2 or 4 bi-layers of polyelectrolytes

PDADMAC = Poly(diallyldimethylammonium) chloride PSS = Polystyrene sulfonate

# ZnO nanorods: surface passivation



#### **CuSCN** spray deposition





### Layer-by-layer polyelectrolytes







### Power output



#### Polyelectrolytes



### Mechanism

 Free carriers in ZnO screen polarisation internally by redistributing in response to the polarisation

 Passivation of surface reduces carrier concentration, reducing the internal screening



**Non-Passivated Nanorods** 









# **Electrical Impedance**





# **Electrical Impedance**



 Time constant of system shows good correlation with peak voltage



# Wireless sensor nodes





- HUMS key to ensuring helicopter safety
- Components distributed through aircraft
- Vibration provides key indicator of component health
- Also provides excellent source of energy!

# Wireless sensor nodes



Helitune

- IVHM 'integrated vehicle health management' - sensors distributed through aircraft
- Wiring in difficult and expensive
- Wireless nodes easy to install
- Ideally 'fit and forget'
- Batteries require replacement
- Energy harvesting desirable



# Summary



- P-n junctions made with polymer p-type material to reduce rate of screening of polarisation
- Compared to ZnO/insulator structure, p-n junction delivers 200x more power on load despite 3x lower V<sub>oc</sub>

leen Marv

- Nanorod surface passivated using either inorganic CuSCN, or a polymer layer, increasing power output due to reduced screening
- Devices investigated for helicoptor sensor nodes
- Power output must be increased to give good duty cycle
- Recent investigations to vary seed layer, and top contact

# **Thank You**

Queen Mary, UK Nimra Jalali, Steve Dunn National Physical Laboratory, UK Peter Woolliams, Melvin Vopson, Mark Stewart, Paul Weaver, Markys Cain Helitune Ltd, UK James Lovell, Alex Palmer-Walsh, Peter Morrish University of West Bohemia, Czech Republic Petr Novák SPECIFIC, Swansea University, UK Simone Meroni, Peter Greenwood, Joel Troughton, Trystan Watson,

### j.briscoe@qmul.ac.uk









specific

Innovate UK

#### **Further information**

Screening: J. Briscoe *et al.* (2012) *Adv. Energy Mater.* **2**, 1261–1268. doi: 10.1002/aenm.201200205 Measurement: J. Briscoe *et al.* (2013) *Energy Environ. Sci.* **6**: 3035–3045. doi: 10.1039/C3EE41889H CuSCN passivation: N. Jalali *et al.* (2014) *J Mater Chem A* **2**:10945. doi: 10.1039/c4ta01714e PDDA/PSS : N. Jalali *et al.* (2015) *J Sol-Gel Sci Technol* **73**:544–549. doi: 10.1007/s10971-014-3512-4 Efficiency measurements: J. Briscoe *et al.* (2012) *Appl. Phys. Lett.* **101**, 093902. doi: 10.1063/1.4749279 Review paper: J. Briscoe and S. Dunn (2015) *Nano Energy* **14**: 15–29 doi: 10.1016/j.nanoen.2014.11.059