
Thermoelectric Generation from 
SNAP III to Body Heat Harvesters:  
Inventing Materials to Unleash 
Technology  
Dario Narducci, 

University of Milano Bicocca, Dept. of Materials Science 

dario.narducci@unimib.it 

This presentation was supported by FP7–NMP–2013–SMALL–7, 
SiNERGY (Silicon Friendly Materials and Device Solutions for 
Microenergy Applications) Project, Contract n. 604169. 



 

 

 

 

 

 

Thermoelectric  

Figure of Merit 

Thermoelectric Phenomena 
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α – Seebeck coefficient 
σ – electrical conductivity 
κ – thermal conductivity 
T – absolute temperature 
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Thermoelectric Generators 

Pros 

Cons 

• No moving parts 

• High reliability 

• Can be miniaturized 

• Very low efficiency 

• Relatively high costs 
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Hot sink temperature (K) 
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TEGs before 2000 

Low efficiency vs. high reliability 

 

SNAP on Nimbus III (1968) 
28.2 We 

SNAP-27 on moon (Apollo 12) 
70 We 
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Pioneer 2 - Launched 1972 
RTEG still working in 2002 upon leaving solar 
system 



Still the key technology for 
outer space exploration 

 

GPHS-RTG on Mars (Curiosity) 
292 We 

TEGs before 2000 
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Thermoelectricity on Earth before 2000 

RTG for pacemakers (USA - 1974) 

Body heat harvester (Japan - 1998) 

Oil burning lamp using the first commercial 
TEG (ZnSb- constantan) (USSR - 1948) 
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Thermoelectricity and Nanotechnology 
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The nanotechnological strategies 

Decreasing the thermal conductivity by introducing λ-
selective scattering centers: 

• nanowires 

• nanolayers 

• nanoprecipitates  

• endotaxy 
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The nanotechnological strategies 

Increasing the power factor by 

• energy filtering 

• modulation doping 

• band engineering 

 

A. Popescu, LM Woods, Adv. Funct. Mater. 2012, 22, 3945 

J-H Bahk, Z. Bian,A, Shakouri, PRB 87, 075204 (2013) 
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Nanotech Silicon 

Silicon in itself is a poor TE 
material but ZT could be raised 
by nanostructuring, lowering κ. 
 

A.I. Boukai et al., Nature 451(7175), 168–171 (2008) 
A.I. Hochbaum et al., Nature 451(7175), 163–167 (2008) 
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New opened horizons, New ways of thinking 

‘Thermoelectric module is expected to 
reach 7% conversion efficiency at a cost 
of US$2/Watt in 2015.’ China Steel Corp. 

Nonetheless, microharvesting  
is still the largest niche 
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• Installation costs 
• Euro/watt 
• Abundance 

Economics 

• Thermal matching 
• Contact resistance 
• Heat dissipation 
• Power density 
• Treasuring pro’s 

Technology 

• Temperature range 
• Thermal power acceptance 
• Metallurgical issues 

Science 



Cost factors 

Threshold of acceptance strongly depends upon application: 
 

• installation (power) costs 
▫ TEGs for civilian use  10 €/W (actual) - 1 €/W (target) 

▫ TEGs in aerospace  100-200 €/W (+ launch costs) 

▫ Coal power plant  1.64 €/W 

▫ Solar panel  0.55 €/W 
 

• energy costs 
▫ TEGs for civilian use  0.0016 €/Mjoule (lifetime of 20 years) 

▫ household electric supply 0.04-0.08 €/Mjoule (price) 

▫ battery   30 €/Mjoule (price) 
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Abundance 
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Power consumption 

World generation capacity  4 TW  1012 W 

Power station   1 GW  109 W  

House    10 kW  104 W  

Light bulb    100 W  102 W 

Laptop, human heart  10 W  101 W 

Cellphone    1 W  100 W 

Wireless sensor   1 mW  10-3 W 

Wristwatch    1 μW  10-6 W 

Cellphone signal   1 nW  10-9 W 
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vs. 1-10 μW/cm2 (low ΔT range) 
vs. 1-100 mW/cm2 (high ΔT range) 



Integration 

• The rush for the high ZT is 
being replaced by the urge of 
the largest power density 

• ZT = 1 is acceptable for 
industrial applications 

• Power output depends also 
(and often: especially) on  
▫ device architecture 

▫ thermal chain (contact 
resistances) 

▫ mechanical stability 
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Treasuring the TEG advantage 

• Pros 
▫ Mobile 

▫ Lower maintenance 

▫ Environmentally friendly 

▫ Higher uptime 

• Cons 
▫ Dependent on availability of 

harvestable energy source 

▫ Strict power budget 

▫ Upfront cost may be higher 

▫ Less mature technology 

What to target: 
• Low data rate  
• Low duty cycle 
• Ultra-low power 
• Mobility 
• Mission-critical 
• Cost-tolerant 
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Overall... 



L
i-

D
. 
Z

h
a

o
, 
V

.P
. 
D

ra
v
id

, 
a

n
d

 M
.G

. 
K

a
n

a
tz

id
is

, 
E

n
e

rg
y

 E
n

v
ir

o
n

. 
S

c
i.
, 
2

0
1

4
,7

, 
2

5
1

-2
6

8
 About the temperature range 

18 

Stirling 
Rankine 

Rankine 
Brayton 

Brayton 

0%

10%

20%

30%

40%

50%

60%

70%

80%

300 400 500 600 700 800 900 1000 1100 1200 1300

Ef
fi

ci
e

n
cy

 

Hot sink temperature (K) 

Carnot ZT = 0.5 ZT = 1

ZT = 2 ZT = 3 other technologies



19 

C
o

u
rt

es
y

 o
f 

H
L

7
 S

ta
n

d
ar

d
s 



Body heat harvesting 
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Current limitation is not at the 
material level but at the device level: 
• thermal mismatch 
• contact resistance 
• effective dissipation 



Contact resistance  
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Contact stability 

22 

B
ar

ak
o

 e
t 

al
., 

J.
 E

le
ct

ro
n

. M
at

er
., 

4
2

, 2
0

1
3

, 3
7

2
 • Thermal contacts rule the actual amount of 

ΔT sensed by the TE legs 
• In contacts to soft surfaces, additional 

thermal resistances arise 
• Furthermore, thermal cycling may cause 

interdiffusion at metal-TE contacts 
• Reliability issues often related to 

metallurgy 



Dissipation efficiency 
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If the hot side is not perfectly insulated (or the heat source strength decreases) 
constant temperature/heat flow BCs do not apply around μ1= 1. Since typical μ1 for 
TEGs are between 10-1- 101 (bulk) and 106 (micro/nano), application of standard 
analyses may mislead optimization of leg lengths.  
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Dissipation efficiency 
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P Gambier et al , Meas. Sci. Technol. 23, 2012, 015101 



Conclusions 

• Nanotechnology breakthrough enabled new applications 
for TEGs 

• It induced a rethinking of material research on TE: 
▫ Raw material issues 

▫ Cost factors & integration 

▫ Strict correlation between material development and device design 

• Take-home message 
▫ ‘Side’ issues  in material technology are central to TEG design 

▫ TEG is not a one-size-fits-all kind of technology 

▫ The bridge over the Valley of Death possibly stands on careful 
selection of scenarios where TE points of strength can be fully 
appreciated 

▫ Internet of (Mobile) Things may be a suitable workbench if 
applications are realistically selected (e.g. body heat harvesting) and 
technology is accurately tailored  
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