Phonon Filtering by Nanovoids In Silicon: a Computational and Experimental Analysis

D. Narducci¹, B. Lorenzi¹, M. Dunham², R. Tonini³, S. Frabboni³, G.C. Gazzadi, R. Dettori⁴, C. Melis⁴

L. Colombo⁴, G. Ottaviani³ K. Goodson²

- ¹ Dept. Material Science, Univ. of Milano Bicocca, Italy
- ² Dept. Mechanical Engineering, Stanford Univ., California
- ³ Dept. of FIM, Univ. Modena, Italy
- ⁴ Dept. of Physics, Univ. of Cagliari, Italy

Background

The role played by morphological defects (md's) on thermal conductivity and phonon MFPs has been the subject of a wealth of papers recently appeared in literature.

Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics

Asegun S. Henry^{1, *} and Gang Chen²

Aim of this work

- Investigate the interplay among md size and density
- Compare thermal conductivity trends when fixed-size md's are also present
- Reference system is silicon, both single- and nano-crystalline
- Fixed-size md's are grain boundaries (GBs)
- Variable-size md's are nanovoids (NVs)

Helium implantation

Heat treatment

Nanovoids generated by Heimplantation in scSi

G. F. Cerofolini et al., Mater. Sci. Eng., R; 27 (2000) 1-52

dario.narducci@unimib.it ICT2015

Sample preparation & TDTR

Double I² on 450-nm thick nanocrystalline Si films grown by CVD on oxidized Si 1. 90 keV, 4×10^{16} cm⁻² 2. 58 keV, 1.5×10^{16} cm⁻²

NV Shape and Distribution

Sample B6S1: Annealed at 500°C

WITHIN THE GRAINS: Void diameter $d_p \approx 2 - 4$ nm Void density $\approx 3 \times 10^{17}$ cm⁻³ Void spacing $d_s \approx 11$ nm

Sample B6S6: After the whole cycle

Coalescence of voids as in the single-crystal case

B. Lorenzi, et al.; J. Electron. Mater., 43 (2014) 3852-3856

NV Shape and Distribution

Sample B6S1: Annealed at 500°C

WITHIN THE GRAINS: Void diameter $d_p \approx 2 - 4$ nm Void density $\approx 3 \times 10^{17}$ cm⁻³ Void spacing $d_s \approx 11$ nm

Sample B1S1: Annealed at 1000°C

Void diameter $d_p \approx 1 - 2 \text{ nm}$ Void density $\approx 2 \times 10^{18} \text{ cm}^{-3}$ Void spacing $d_s \approx 6 - 9 \text{ nm}$

B. Lorenzi, et al.; J. Electron. Mater., 43 (2014) 3852-3856

A. S. Henry & G. Chen, J. Comput. Theor. Nanosci. 5 (2008) 1–12. A. Eucken, Ceram. Abstr. 11 (1932) 576

J. Tang et al., Nano Lett., 10 (2010) 4279-4283

A possible explanation

$$\varphi \equiv \frac{V_{\rm p}}{V_{\rm tot}} = \frac{4\pi}{3} \frac{\left(d_{\rm p}/2\right)^3}{\beta (d_{\rm s} - d_{\rm p})^3}$$

If porosity φ is constant, $d_{\rm s} \propto d_{\rm p}$

Thus, the spacing d_s between scattering centers scale with the *roughness* d_p of the scattering surface.

- *d*_s sets the MFP of scattered phonons
- *d*_p sets the wavelength range of scattered phonons

Concurrent scattering at NVs and GBs

- With no NV, MFP is limited by GB only, affecting phonons with $\lambda < d_{GB} = 50$ nm
- For large d_s , d_p ($\approx d_{GB}$) NVs have little effect as they scatter phonons already scattered ٠ by GBs (B6S6 and B6S5)
- The more d_s and d_p decrease, the more the MFP of phonons with $\lambda < d_p$ decreases (MFP) ٠ $\approx d_s$) (B6S3, B6S2 and B6S1), i.e. NVs decrease the MFP of phonons with $\lambda < d_p$ to $\approx d_s$
- For very small d_s and d_p (B1S1) NVs scatter phonons of very low λ (< $d_p \approx 1$ nm), that • however marginally contribute to κ . Thus they are ineffective on κ , that gets back to its NV-free value

Computational framework

Method: Approach-to-Equilibrium Molecular Dynamics

• AEMD solution of heat-transport equation under PBC for an initial steplike initial temperature profile

C. Melis et al., Eur. Phys. J. B. 87, 96 (2014)

• Time-dependent temperature difference between the two regions

$$\Delta T(t) = \sum_{n=1}^{\infty} C_n e^{-\alpha_n^2 \left(\frac{\kappa}{\rho c_v}\right)t}$$

where:

• ΔT is fitted to obtain κ

Computational framework

Investigated systems:

Ordered porous sc-Si (OPscSi)
Random porous sc-Si (RPscSi)
Quasi-random porous nc-Si (RPncSi)

In OPscSi the porosity $\varphi = \varphi(N_p, d_p)$ actually depends on the number of NVs (N_p) and on NV diameter (d_p) In RPscSi a uniform φ is generated along the sample

Simulation protocol:

- 1. high-temperature simulated annealing
- 2. careful equilibration at room temperature
- 3. inner surfaces fully relaxed to a highly-defected structure
- 4. used EDIP potential [Justo et al., PRB 58 (1998) 2539]

Trends in ncSi

Possible reasons for the discrepancy

- NV distribution in the simulation is not uniform, NV segregating close to the GBs (thus, $d_{\rm s} \not \propto d_{\rm p}$)
- NVs may not be fully described by their size, i.e. termination of inner surfaces by e.g. H may make ultrasmall NVs qualitatively different from standard NVs

E. Romano et al., *Surf. Interf. Anal.*, **42** (2010) 1307; E. Romano et al., *Surf. Interf. Anal.*, **42** (2010) 1321; G.F. Cerofolini et al., *Surf. Sci.*, **604** (2010) 1215

• Other ideas?

Summary and Conclusions

- Ion implantation demonstrated a suitable technique to introduce controlled porosity in silicon
- NVs were found to modulate κ depending on their spacing and size
- Euken model of thermal conductivity was falsified
- AEMD simulation quantitatively confirmed the effect of NV in ncSi on κ
- Gray model of thermal conductivity confirmed inadequate to explain the physics of the system
- A question remains open about why ultrasmall NVs do not impact on κ

This work was partially supported by FP7-NMP-2013-SMALL-7, SiNERGY (Silicon Friendly Materials and Device Solutions for Microenergy Applications), Contract n. 604169

sinergy-project.eu Contact: luis.fonseca@imb-cnm.csic.es